ORGANIC NO-TILL ROW CROP PRODUCTION

Léa Vereecke – Organic Consultant and Regional Manager, Rodale Institute <u>lea.vereecke@rodaleinstitute.org</u> 608 889 7036

National No-Till Conference January 12, 2024 Indianapolis, IN

OUR CORE PILLARS A CATALYST FOR CHANGE

Rodale Institute is a 501(C)(3) nonprofit which has been dedicated to advancing regenerative organic agriculture for over 75 years through research, education and outreach.

RESEARCH

EDUCATION

RODALE INSTITUTE THE FARMING SYSTEM TRIAL RESEARCH KUTZTOWN, PA

ORGANIC MANURE

Represents an **organic dairy or beef operation**. Featuring long rotation including both annual feed grain crops and perennial forage crops. Fertility is provided by leguminous cover crops and composed manure.

ORGANIC LEGUME

Represents an **organic cash grain farming**. Featuring a mid-length rotation of annual grain crops and cover crops. Fertility is provided by leguminous cash and cover crops. Rotations provide defense against pests.

CONVENTIONAL SYNTHETICS

Represents the **majority of grain farms in the U.S**. Relies on synthetic nitrogen for fertility, weeds are controlled by synthetic herbicides applied at rates recommended by Penn State Univ. Cooperative Extension.

RODALE INSTITUTE REGIONAL RESOURCE CENTERS

Headquarters Kutztown, PA

- ★ Southeast Organic Center Chattahoochee Hills, GA
- Midwest Organic Center Marion, IA
- California Organic Center Ventura, CA

 Pacific Northwest Organic Center Skagit Valley, WA
 Pocono Organic Center Long Pond, PA

RODALE INSTITUTE EDUCATION

WEBINARS

Webinars from Rodale Institute give you firsthand access to our staff and research, no matter where you're located.

TRAINING PROGRAMS

Receive hands-on & classroom education through one of our training programs – specializing in organic vegetable production, livestock, beekeeping, and more.

EDUCATIONAL TOURS

Custom guided tours are available for groups who have a specific goal or educational need. Tour the farm with our expert staff for a unique educational experience.

FIELD DAYS & WORKSHOPS

Attend an event at one of our campuses to learn about regenerative organic agriculture & meet our expert scientists/farmers.

ONLINE COURSES

Let the Rodale Institute be your teacher — wherever you are in the world! Join us for virtual farm and garden trainings with our expert staff.

DOWNLOADABLE RESOURCES

Looking for more info to jumpstart your regenerative organic journey? Whether you need farm funding resources or composting basics, our website has you covered.

RODALE INSTITUTE CONSULTING SERVICES

Our consultants have experience with different crops, soils and climates throughout the U.S. and are here to work with you wherever you are located.

When you contact us, we'll discuss your needs and find a solution that is **right for you**.

6

RODALE INSTITUTE CONSULTING SERVICES

Workshops Marketing Weed-management

Equipment Certification

Inputs-and-fertility Networking

Farmer-led-research Crop-rotation **Recordkeeping**

EACH FARM IS UNIQUE

There is **no one-size-fits-all** in farming. What works for others may not work for you. The **trialand-error learning curve** can be smoothed out by collecting relevant information but can not be erased completely.

Keeps it fun, doesn't it?

ORGANIC NO-TILL SYSTEM KEY COMPONENTS

(1) COVER CROPS

Chickling Vetch

Rye

• Biomass quantity and quality

Crimson clover Hairy vetch

- Flowering time
- Crop nutrient needs
- Pest and diseases
- "Crimpability"

Peas

ORGANIC NO-TILL SYSTEM KEY COMPONENTS

(2) ROLLER CRIMPER

This is not an endorsement by Rodale Institute; nor is this list exhaustive

GET THE BLUE-PRINTS FOR FREE!

Are you thinking about implementing roller crimping and other no-till organic practices to protect soil health on your farm? Bring these blueprints to any local manufacturer (or build your own!) to get started.

Complete the form below to get the guide.

GET PDF

Completing this form signs you up for electronic communications from Rodale Institute. You can easily unsubscribe at any time.

2023 USDA PLANT HARDINESS ZONES

(average annual extreme minimum winter temperature)

3a (-40 to -35 °F/-40 to -37.2 °C)

3b (-35 to -30 °F/-37.2 to -34.4 °C)

4a (-30 to -25 °F/-34.4 to -31.7 °C)

4b (-25 to -20 °F/-31.7 to -28.9 °C)

5a (-20 to -15 °F/-28.9 to -26.1 °C)

5b (-15 to -10 °F/-26.1 to -23.3 °C) 6a (-10 to -5 °F/-23.3 to -20.6 °C) 6b (-5 to 0 °F/-20.6 to -17.8 °C) 7a (0 to 5 °F/-17.8 to -15 °C)

7b (5 to 10 °F/-15 to -12.2 °C)

8a (10 to 15 °F/-12.2 to -9.4 °C)

ORGANIC NO-TILL SOYBEANS

RYE SEEDING RATE X VARIETY TRIAL

A comparison of **4 rye varieties** planted at **3 different seeding rates** on rye biomass production potential and lodging.

Rye Varieties

Rye Seeding Rates

- 1. Aroostook
- 2. ND Gardener
- 3. Spooner
- 4. Danko

- 1. 1,500,000 seeds/ac
- 2. 2,250,000 seeds/ac
- 3. 3,000,000 seeds/ac

RYE: SEEDS VS. POUNDS PER ACRE

	Seeds/ac				
		1,500,000	2,250,000	3,000,000	
	14,510	103	155	207	
/lb	14,982	100	150	200	
eds/	15,345	98	147	196	Lps
Se	18,508	81	122	162	/ac
	20,500	73	110	146	
	22,102	68	102	136	

Rye biomass production at anthesis for 4 rye varieties measured at Arlington, WI, 2021-2022

Ben Brockmueller, Léa Vereecke, Erin Silva

Rye biomass production at anthesis for 3 rye seeding rates measured at Arlington, WI, 2021-2022

OPTIMIZE RYE BIOMASS PRODUCTION

- ✓ Seed early no later than October 1st.
- ✓ Seed heavy at least 1.5M seed/ac.
- Provide fertility nitrogen deficiency in the fall will result in poor tillering = less biomass.
- Prepare seed bed no-till seeding of the rye can lead to uneven stands.
- Use proper equipment drill, or broadcast followed by shallow incorporation (e.g. VT tool).

RYE STAND ASSESSMENT LATE MARCH TO EARLY APRIL

- Chris Wilson's rule of thumb, Wilson Organic Dairy, Platteville, WI
- 80% or more canopy cover is a go even if there is a few weeds.
- 50-80% is only a go if there are no weeds.
- below 50% is a no-go.

CEREAL RYE BIOLOGY

Dual induction requirement for flowering

 primary induction = vernalization = requirement for low temperature initiate inflorescence primordia (required but invisible to the naked eye)

 secondary induction requirement for long-day allowing for stem elongation, inflorescence development and anthesis.

> Illustration: Katja Koehler-Cole, UNL

CEREAL RYE BIOLOGY

Indianapolis, IN		Madis	on, N	NI
May 1 13h	56m Ap	oril 25	13h	55m
May 2 13h	59m Ap	oril 26	13h	58m
May 3 14h	1m Ap	oril 27	14h	0m

Average low above 40F and average high above 60F.

Secondary induction requires "14 hours of daylight accompanied by temperatures of 40 to 50 degrees F (Stoskopf, 1985)"

April 2, 10%. Aroostook planted Oct 8 @ 155lbs/ac (3M spa).

April 2, 34%. Spooner planted Sept 20 @ 160lbs/ac (3M spa).

April 2, 58%. Danko planted Sept 20 @ 190lbs/ac (3M spa).

April 2, 80%.* Aroostook planted Sept 17 @ 155lbs/ac (3M spa).

!!Camera Angle!! Same field, same day

ADEQUATE RYE TERMINATION

Wait for **100% anthesis** or "anthesis complete"

RYE ANTHESIS DATES

Visual observation of the **frequency at which rye plots reached 50% anthesis** grouped by rye varieties and seeding rates at the Arlington Ag Research Station, 2022.

Treatment		Frequency of rye plots reaching 50% anthesis, %					
Ireatment		May 31 st	June 1 st	June 2 nd	June 3 rd		
Variety	1.1						
Aroostook		0.00	91.7	8.33	0.00		
ND Gardener		8.33	91.7	0.00	0.00		
Spooner		0.00	50.0	41.7	8.33		
Danko		0.00	66.7	25.0	8.33		

ONSIN Ben Brockmueller, Léa Vereecke, Erin Silva

SOYBEAN PLANTING

- Seeding rate: at least 185k seeds/ac.
- Seeding depth: in moisture, no deeper than 2.5".
- Variety: needs research.

ASSOCIATE PROFESSOR AND EXTENSION SPECIALIST

bluck@wisc.edu (608) 890-1861

232D Agricultural Engineering Building 460 Henry Mall Madison, WI 53706

Jessica Drewry

ASSISTANT FACULTY ASSOCIATE

jdrewry@wisc.edu

125 Agricultural Engineering Building 460 Henry Mall Madison, WI 53706

Associate Professor

Phone: 608-890-1503 E-mail: emsilva@wisc.edu

593a Russell Labs 1630 Linden Dr Madison, WI 53706

Conservation Innovation Grant

Effect of soybean seeding method on soybean emergence, stand, and yield averaged across the study, 2019-2021.

Trea	atment	Soybean Emergence (%)	Soybean Stand (k plant/ac)	Soybean Yield (bu/ac)
Souding Data	185k seeds/ac	67 a	124 b	35 b
Seeding Rate	225k seeds/ac	66 b	148 a	36 a
	Low (150 lb)	65 b	134 b	40
Down Pressure	High (300 lb)	67 a	138 a	41
Coulton	No Coulter	66	135 b	35
Coulter	Coulter	67	138 a	35
Clasing wheel	Standard Rubber	67	136	35
closing wheel	Dawn RCX	66	136	35

NISCONSIN Drewry, Luck, Brockmueller, Vereecke, Silva

STARTER FERTILIZER TRIAL

Fertilizer was banded at planting to achieve a rate of 25 lbs N/ac.

Treatment	Weed Biomass (Ibs DM/ac)	Soybean Biomass (Ibs DM/ac)	Soybean Stand (k plant/ac)	Soybean Yield (bu/ac)
No Fertilizer	175	3,398	103	38
Pelletized Poultry Manure	315	3,515	110	39
Feathermeal	442	3,075	114	35
Chilean Nitrate	164	3,716	113	37

None of the differences observed were statistically significant.

WISCONSIN Ben Brockmueller, Erin Silva

LOWER SOYBEAN YIELDS WHEN SPRING IS DRY

Data from paired plots in Aurora and Geneva, NY Emily McFadden,

Brockmueller, Erin Silva,

Kristen Loria, Ben

and Matthew Ryan

>20 60 8 ~10 S to June 50 Soybean yield (bu/a) ~10 6 ~15 40 ~10 5 15 (in) May 30 4 3 20 Precipitation 10 1 0 2013 2014 2015 2016 2017 2018 2019

WHAT ABOUT PLANTING GREEN?

~ May 15 Rye at boot stage Plant soybeans Sept 20 – Oct 1 Plant rye

Sep Oct Nov Dec

JanFebMarAprMayJunJulAugSepOctImage: Constraint of the second second

SOYBEAN STAGE AND CRIMPING

ARLINGTON AGRICULTURAL RESEARCH STATION, WI 2017-2020

With early plant: tilled averaged 3.75bu/ac increase; no-till averaged 5.75bu/ac decrease.

Léa Vereecke, Erin Silva

PLANTING GREEN ON FARM TRIAL 2022

Rye stage at	Ry	Rye seeding rate in million of seeds per acre				
soybean seeding	1.5	2.	3.0			
Anthesis	-55	53 (plant)	57 (drill)	54		
Boot		54 (full)	53 (skip row)	•		

ORGANIC NO-TILL SOYBEAN

- Use of custom rates for field operations provides for standardization of 1) return on investment of the equipment fleet and 2) fair 'hired labor' values as they relate to equipment operations.
- This analysis assumes that Owner's Labor & Management rates are the same for each system.

Organic No-Till (/ac)

	High-Speed Disk	\$	24.70
Fall	Rye Seeding (drill)	\$	21.20
•	CC Rye Seed (150 lb/ac rate)	\$	75.00
	Roller-Crimper (Rotary Hoe rate)	\$	9.50
	NT Soybean Plant 30"	\$	23.40
Spring	Soybean Seed 200,000 sds/ac	\$	107.20
	Weed Zap 1x	\$	50.00
e •	Harvest Soybeans	\$	37.10
		9.	
Total Va	ariable Costs	\$	348.10
Revenue (50bu/ac @\$20/bu)			1,000.00
Return	above Variable Costs	\$	651.90

Organic Till (/ac)

	High-Speed Disk	\$	24.70	
Fall	Rye Seeding (drill)	\$	21.20	
	CC Rye Seed (50 lb/ac rate)	\$	25.00	
	High-Speed Disk	\$	24.70	
1	Field Cultivator	\$	17.40	
	CT Soybean Plant 30"	\$	22.40	
Conting	Soybean Seed 200,000 sds/ac	\$	107.20	
spring	RH or TW 2 x	\$	19.00	
o 9	Cultivate 3 x	\$	40.20	
	Weed Zap 1x	\$	50.00	
	Harvest Soybeans	\$	37.10	
Total Var	iable Costs	\$	388.90	
Revenue	(55bu/ac @\$20/bu)	\$ 1	L,100.00	
Return a	Return above Variable Costs \$ 711.10			

42

ORGANIC NO-TILL SOYBEAN

	Total Variable Costs /ac	Revenue /ac	Return above Variable Costs /ac
Organic till	\$388	\$1,100	\$711
Organic no-till	\$348	\$1,000	\$651

NO-TILL SOYBEAN IN ROLLED RYE ECONOMICS

Crimper	Cost /ac
Roller crimper	\$9.5
Roundup + AMS*	\$20
Total	\$29.50

No crimper	Cost /ac	
Roundup, 24D, Metribuzin, Sulfentrazone*	\$50	
Glufosinate + AMS*	\$28	*includes
Total	\$78	application cost

Credit: Greg McGlinch, Darke County, Ohio

ORGANIC NO-TILL CORN TRIALS CONDUCTED IN WI

Annual cov		
Spring	Fall	Perennial covers
Peas	Rye	Red clover
Chickling vetch	Winter peas	
Buckwheat and clover	Hairy vetch	
WISCONSIN	Crimson clover	

CRIMPABILITY

- Perennial covers will not be terminated with a roller crimper.
- Grasses rye and triticale are great candidates, wheat not as much.
- Legumes:
 - Hairy vetch, most documented specie.
 - Crimson and Balansa clover, potential candidates, need more studies.
 - Peas and chickling vetch, poor candidates.
- Non-legume broadleaves: buckwheat, insufficient biomass; winter canola, needs two crimping? volunteer issues; etc.

PERENNIAL COVERS

- Not constrained by flowering time for termination and crop plant, only soil temperature.
- Need for cover management before and after crop seeding is unclear.
- Monitor weediness of the stand prior to planting crop.

ORGANIC NO-TILL CORN MOST TRIALED SYSTEMS

Average yield (bu/ac), Arlington WI, 2019-2022.

Year	Rye/Hairy Vetch	Red Clover
2019	52	NA
2020	116	52
2021	111	108
2022	90	37

ORGANIC NO-TILL CORN PLANTER SETUP

Effect of planter set-up on corn stand, emergence, and yield. Arlington, WI, 2020-2022.

Treatment		Corn stand (plant/ac)	Emergence (%)	Yield (bu/ac)
Coulter	Yes	27,405 a	72.9 a	84.0 ^{NS}
	No	23,777 b	63.2 b	80.6
Clasing wheel	Dawn RCX	25,381 ^{NS}	67.5 ^{NS}	78.4 b
closing wheel	Standard Rubber 25,800	25,800	68.6	86.2 a
Down Pressure	Low (150 lb)	25,546 ^{NS}	68.1 ^{NS}	84.5 ^{NS}
	High (300 lb)	25,636	68.0	80.2

ORGANIC NO-TILL CORN RED CLOVER MANAGEMENT

Plant stand and grain yield for 2021 corn planted into red clover.

Treatment	Co	rn stand (plants/ac)	Yield (bu/ac)
	Before	corn planting	
Undercut	Yes	32,278 a	134 a
	No	28,674 b	83.5 b
Flame	Yes	30,421 ^{NS}	112 NS
	No	30,341	106 ^{NS}
· · · · · · · · · · · · · · · · · · ·	After co	orn emergence	
Interrow Crimper (IC)		32,469 a	109 NS
High Residue Cultivator (HRC)		29,458 b	109
IC + HRC		29,038 b	109

CHALLENGES IN REPRODUCIBILITY

Maintaining consistent results with the clover system has remained a challenge

Successfully terminating clover with undercut can depend on soil conditions: dry soil conditions are better to terminate clover.

Drewry, Luck, Brockmueller, Vereecke, Silva

CHALLENGES IN REPRODUCIBILITY

Maintaining consistent results with the clover system has remained a challenge

In-season management increases risk: damage occurs if equipment is not perfectly aligned, or corn rows not perfectly straight. Drewry, Luck, Brockmueller, Vereecke, Silva

QUESTIONS?

Léa Vereecke, Organic Farm Consultant and Regional Manager, Rodale Institute.

Email: lea.vereecke@rodaleinstitute.org Cell: (608)889-7036 https://rodaleinstitute.org/consulting/

