

The Seven Wonders of 300 Bushel Corn Fred Below & Connor Sible

Crop Physiology Laboratory Team – 2023

Principal Investigator

- Dr. Fred Below
- Postdoctoral Research Associate
 - Dr. Connor Sible
- **Principal Research Specialist**
 - Juliann Seebauer
- **Senior Research Specialist**
 - Jared Fender

Ph.D. Students

- Marcos Loman
- Sam Leskanich

Master's Students

- Darby Danzl
- Gabriela Frigo Fernandes
- Miranda Ochs
- Dalton Knerrer

Visiting Research Scholars

- Amanda Beckers
- Julia Isaac
- Pieter Schoenmaker

Trained Graduate Students are Our Product

What Are the Three Ps of Productivity?

Products

Practices

Physiology

What is Crop Physiology?

 Crop Production involves what, when, and where a product or practice works, while Crop Physiology is all of those and WHY it works

Test Your Knowledge of High Yield Corn

How do you know if a politician likes corn?

Former President Trump Likes Corn

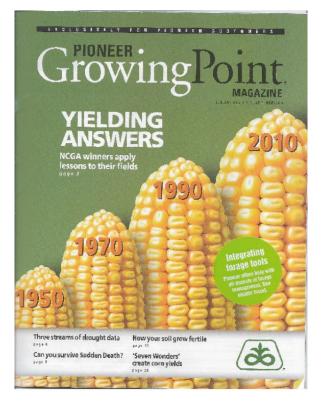
Dr. Fred Below Likes Corn

I Don't Think that President Biden Likes Corn

Presidential Candidate Nikki Haley Likes Corn

Test Your Knowledge of High Yield Corn

•Why is 300 bushel per acre corn the target?



The Quest for 300 Bushel Corn

- Monsanto (2007)- US average corn yields need to double to 300 bushels per acre to feed 9 billion people
- World population expected to reach
 9 billion by 2037

The Seven Wonders of the Corn Yield World The Relative Importance of Management Factors on Yield

o help farmers better understand the value of their crop management decisions, I developed the "Seven Wonders of the Corn Yield World." This is a tool to teach farmers (and students) the relative importance of management factors that can impact corn productivity.

The Seven Wonders ranks the top seven factors that can positively impact corn yields. It assigns an average bushel-per-acre value to each wonder. It's based on a compilation of research conducted by the Crop Physiology Laboratory at the University of Illinois over the last 10 years.

Because the bushel-values are averages of ranges, farmers could experience different values. The research for this ranking was conducted mostly in Illinois, so the relative ranking or value of a particular wonder could change slightly with geography.

Defining a wonde

Some practices are clearly important, but I don't consider them as yield wonders because they are either one-time improvements (idle daniange), they protext rather than increase yield (weed or pest control) or they involve decisions that don't need to be made every year fool pH and nutrient levels). In my mind, good wer, control, along with proper soil pH and adequate levels of phos-

20 PGP magazine / Jan 2008

phorus and potassium, are prerequisites for crop production. They're necessary to allow the seven wonders to express their positive impact on grain yield. One nuance of the seven wonders is that they can interact

with each other to either magnify or lessen a wonder's impact on yield. As a rough rule, the higher the ranking of a particular wonder, the more control it can exert over the wonders below it. Understanding a wonder's ranking, and its interaction with other wonders, gives famers an opportunity to further increase grain yields through crop management.

Weather trumps all

Unfortunately, the first wonder of the corn yield world is the one over which farmers have the least control: the weather. Whether in the form of rainfall or temperature, weather is a major determinant of when the crop can be planted. And weather has a huge impact on grain yield.

Even with the other yield wonders optimized and constant, our research shows a 70-plus bushel variation in grain yield due to weather. Weather reacts strongly with other yield wonders, and all farmers realize weather can circumvent their best management plans. Weather especially affects nitrogen (A) fertilization, the No. 2 wonder of the corn yield work. The ability to popy N, as availability or susceptibility to loss and its impact on parits and are all newly impacted by weather. Because N fertilizer increases grain yield by an average of 20 stubles, and after most of the other yield wonders also can impact the availability or the use O N, nitrogen fertilizer management continues to neetwo considenble attention in the research workd.

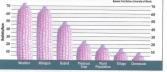
The seeds of potential

Nitrogen use also interacts strongly with the third wonder of the corn yield world, hybrid selection. There's considerable interest in improving the efficiency of N use with genetics or blotechnology.

Hybrid selection is probably the most important decision finmers make. Most own relative the age difference in yield potential among effect commercial hybrids. Arrays of commercial hybrids, arrays of commercial hybrids, grown under conditions where the churre wrouches are pressured to be optimized, typically exhibits a 50-bashed range in grain yield. Hybrid selection will become even more important in the future, when bietechnology adds stress and input traits like desight toberance and improved N use.

The fourth wonder of the corn yield world, previous crop, is becoming more an issue lately as continuous corn acreage has steadily increased. This is despite the 25 bushel-per-acre yield penalty associated with continuous corn and the higher input cost, especially for N.

Previous cop dearly interacts with the first and second worders, if sufficient N is available in a good growing year, the continuouscorn yield penalty can be reduced or eliminated. While it makes sense that some hybrids might perform better than others under continuous corn or our research has not shown this. We find the best hybrid on a farmer's rotated land is also the best one for continuous corn ground.


What's maximum occupancy?

All farmers know the fifth wonder of the corn yield world, plant population, has increased steadily over the last 20 years. What they probably don't know is how well modern hybrids can flex their ear components (such as kernel number and weight) to account for differences in plant stand.

Because of this, we find similar yields between 28,000 and 40,000 plants per acce, although there is a big difference in the size of individual kernels. Thus, most of the 20-bushel yield benefit we see from plant population comes from correcting stands that are too low:

Of course, plant population interacts heavily with weather: High plant populations are particularly susceptible to unfavorable

-The Seven Wonders of the Corn Yield World-

Each of these seven factors contributes to a variation in corn yields. Here they are, ranked from the greatest to the least impact. All told, these factors add up to 260-bushel potential yields.

conditions. Contrary to what many people think, however, we don't see an interaction between plant population and N. There's no need for more N fertilizer at higher plant populations.

To plow or not

The steht wonder of the corn yield world is tillage, which comes in varying degrees or in differing times. Both degree and timing aspects interact heavily with the other yield wonders. The relative advantages or disadvantages of a particular tillage system or time depend largely on the weather. Tillage also interacts with N availability and hybrid.

The degree and timing of tillage can make a big difference with the previous crop because most of the yield penalty associated with continuous com is due to the residue. Similarly, the tillage system can have a big impact on plant population. Overall, our research shows a 15-bushel range of yield due to the various tillage system.

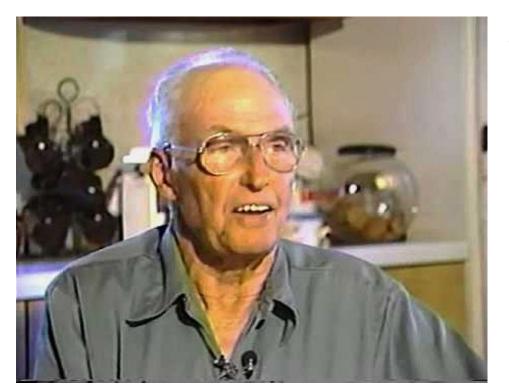
The seventh wonder of the corn yield world is a catch-all that I call chemicals. This includes plant growth regulators and compounds that exert growth-regulator-like effects that lead to a posilive change in growth or yield determination.

Late-season leaf-greening from certain foliar fungicides and new technologies that make the plant less sensitive to environmental stresses. If into this category. While the overall average is a positive 10 bushels, the success of these compounds depends highly on the other yield wonders, especially weather and hybrid. This category has the widest range.

The sum total

They all add up. By optimizing all of the seven wonders, grain yields of 260 bushels should be possible. This total doesn't take into account interactions among the wonders, which in some cases could drive yields even higher. By the same token, a nonoptimized yield wonder lowers yield.

Although I realize the seven wonders concept is a vast oversimplification of all the complicated factors that make a high yielding corn crop, it should give you a better perspective on how your management decisions can impact grain yield. (The


January 2008

Test Your Knowledge of High Yield Corn

How common is 300 bushel per acre corn in our research?

Herman Warsaw Produces Record Corn Yield in 1985

 Herman Warsaw of Saybrook, **Illinois produces** a world record 370 bushels per acre

Research on Herman Warsaw's Farm

•Our replicated research plots on Mr. Warsaw's farm in 1985 produced 313 bushels per acre

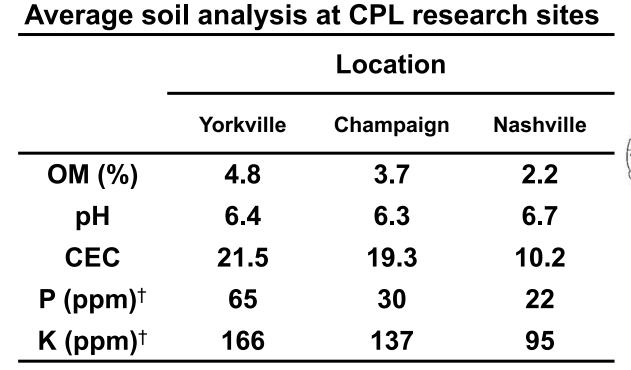
Research on Herman Warsaw's Farm

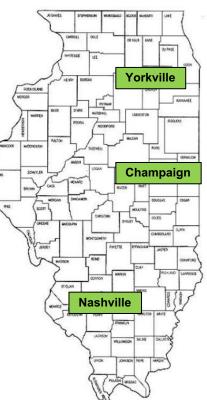
•Our replicated research plots on Mr. Warsaw's farm in 1985 produced 313 bushels per acre

•Did not see 300 bushels again for 30 years

Corn Management Yield Potential How Hybrids Respond to Agronomic Management

Illinois Corn Management Yield Potential 2023 Hybrid Yield Report


Miranda C. Ochs, Connor N. Sible, and Fred E. Below Crop Physiology Laboratory Department of Crop Sciences University of Illinois at Urbana-Champaign



Corn Management Yield Potential How Hybrids Respond to Agronomic Management

Thanks to Stewart Farms in Yorkville and Barting Farms in Nashville

Highest Yearly Yields in CPL Research Trials

Year	Location	Grain Yield
		bushels/acre
2015	Champaign	360
2016	Yorkville	327
2017	Yorkville	379
2018	Champaign	322
2019	Champaign	310
2020	Nashville	279
2021	Nashville	363
2022	Champaign	310
2023	Yorkville	343

All without irrigation and all replicated plot averages

Test Your Knowledge of High Yield Corn

•What management factors can lead to 300 bushel per acre corn?

The Seven Wonders of 300 Bushel Corn

- Ranks, and gives an average bushel per acre value of those seven factors that can have a positive (and sometimes negative) impact on corn yield, and that when summed can lead to 300 bushels
- An update to the previous 'Seven Wonders of the Corn Yield World' that summed to 260 bushels

Crucial Prerequisites, but not 300 Bushel Yield Wonders

Soil Structure and Drainage

Can soil structure be improved from use of No-Tillage or a Cover Crop?

Crucial Prerequisites, but not 300 Bushel Yield Wonders

- Soil Structure and Drainage
- Control of Weeds, Pests, Diseases

Is foliar protection with fungicides (& insecticides) a prerequisite for 300 bushel corn production?

Response to Foliar Protection by Location & Year

Location	2020	2021	2022	2023
	Δ bushels acre ⁻¹			
Yorkville	4	-	5	8
Champaign	14	13	7	5
Nashville	26	12	13	7

Foliar Protection as Miravis Neo and Warrior II at VT/R1 Average of 36 hybrids at each location in 2020 & 2021, and 20 in 2022 & 2023 Yorkville site lost in 2021 to Derecho winds.

Tar Spot (*Phyllachora Maydis*) a New and Potentially Devastating Leaf Disease in the US Corn Belt

Crucial Prerequisites, but not 300 Bushel Yield Wonders

- Soil Structure and Drainage
- Control of Weeds, Pests, Diseases
- Proper soil pH & adequate 'base' levels of P & K based on soil tests

Are Soil Tests Calibrated to 300 Bushels?

Test Your Knowledge of High Yield Corn

 When were soil test values calibrated to corn yields?
 In the 60's and Early 70's

Crucial Prerequisites, but not 300 Bushel Yield Wonders

- Soil Structure and Drainage
- Control of Weeds, Pests, Diseases
- Proper soil pH & adequate 'base' levels of P & K based on soil tests

Se	ven Wo	onders of the 300	Bushel Corn
	Rank	Factor	Value
			bu/acre
	1	Weather	90+
	2	Fertility	90
	3	Hybrid	50
	4	Plant Population	25
	5	Crop Rotation	20
	6	Tillage/No-Tillage	15
	7	Biologicals	10

Seven Wonders of the 300 Bushel Corn				
Rank	Factor	Value		
		bu/acre		
1	Weather	90+		
2	Fertility	90		
3	Hybrid	50		
4	Plant Population	25		
5	Crop Rotation	20		
6	Tillage/No-Tillage	15		
7	Biologicals	10		

 Every night in August that the temperature stays above 73 degrees results in a bushel per acre loss in yield

Planting Date is Determined by Weather

May 15th, 2019 in Champaign, IL

Non-Uniformity of Corn Due to Early Planting

Non-Uniformity of Corn Due to Early Planting

All	The We	onders Interact wit	h Each Other
	Rank	Value	
	1	Weather	bu/acre 90+
	2 Fertility 3 Hybrid		90
			50
	4 Plant Population	Plant Population	25
	5 Crop Rotation		20
	6	Tillage/No-Tillage	15
	7	Biologicals	10

Does weather impact nutrient availability?

Weather Induced Nitrogen Loss

Se	ven Wo	onders of the 300	Bushel Corn
	Rank	Factor	Value
			bu/acre
	1	Weather	90+
	2	Fertility	90
	3	Hybrid	50
	4	Plant Population	25
	5	Crop Rotation	20
	6	Tillage/No-Tillage	15
	7	Biologicals	10

Nutrition Needed for 300 Bushel Corn

Nutrient	Required to Produce	Production Coefficient	Removed with Grain	Removal Coefficient
	lbs/acre	lbs/bushel	lbs/acre	lbs/bushel
Ν	333	1.11	192	0.64
P_2O_5	132	0.44	105	0.35
K ₂ O	234	0.78	78	0.26
S	30	0.10	18	0.06
Zn (oz)	9.3	0.031	5.7	0.019
B (oz)	1.5	0.005	0.3	0.001

Crop

Physiology

Adapted from Agronomy Journal 105:161-170 (2013)

 How can we best use fertilizers to ensure adequate soil fertility for high yields? **Better Source**, Rate, Time, and Placement

 How can we best use fertilizers to ensure adequate soil fertility for high yields? **Better Source**, Rate, Time, and Placement

•Why is better placement of fertilizers so important?

Roots Expand Only 6-8 Inches Horizontally Roots do Not Cross the Row

CROP SCIENCES UNIVERSITY Crop Root System at R5, 32,000 plants/acre

Physiology

Methods for Better Placement of Fertilizers

Liquid at Planting - In-Furrow or 2 x 2

Placement with Liquid In-Furrow Starter Fertilizer

Effect of Properly Placed Fertilizer

3 gallons 10-34-0 In-Furrow

Methods for Better Placement of Fertilizers

- Liquid at Planting In-Furrow or 2 x 2
- Banding directly under future crop row

Preplant Banding Application

MonTas

Fertilizer is placed 4 to 6 inches deep directly below the future crop row

Improved Growth with Banded Fertility

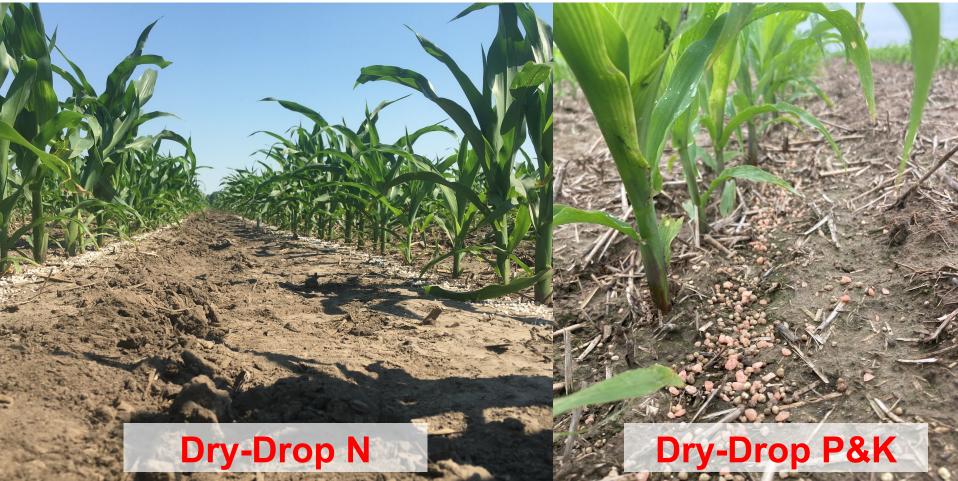
Broadcast P & K Banded P & K

Same Hybrid – Same Population – Same Planting Date- Same Fertilizer Amounts

Methods for Better Placement of Fertilizers

- Liquid at Planting In-Furrow or 2 x 2
- Banding directly under the future crop
- In season placement adjacent to the crop row Y-Drop

Research Scale Sidedress Toolbar Center-Row Coulter or Y-Drop



Methods for Better Placement of Fertilizers

- Liquid at Planting In-Furrow or 2 x 2
- Banding directly under the future crop
- In season placement adjacent to the crop row Dry-Drop

Surface Banding of Dry Fertilizer – Dry Drop

Se	ven Wo	onders of the 300	Bushel Corn
	Rank	Factor	Value
			bu/acre
	1	Weather	90+
	2	Fertility	90
	3	Hybrid	50
	4	Plant Population	25
	5	Crop Rotation	20
	6	Tillage/No-Tillage	15
	7	Biologicals	10

Yield Range Among Hybrids by Location & Year

Location	2020	2021	2022	2023
		Δ bushe	els acre ⁻¹	
Yorkville	57	-	40	62
Champaign	48	62	49	63
Nashville	70	61	60	38

Average of 36 hybrids at each location in 2020 & 2021, and 20 in 2022 & 2023 Yorkville site lost in 2021 to Derecho winds.

Not All Hybrids are Not Created Equal - 2022

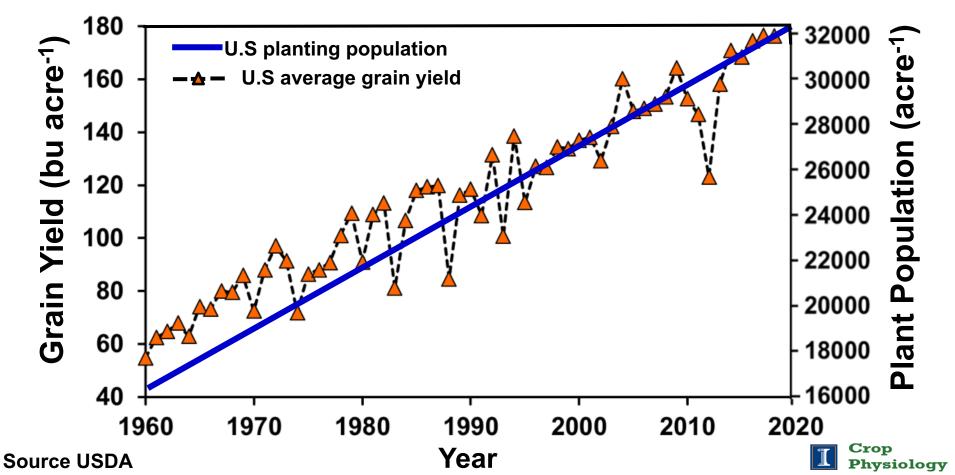
Rank	Yield	Rank	Yield	Rank	Yield	Rank	Yield
	bu/acre		bu/acre		bu/acre		bu/acre
1	284	6	267	11	258	16	247
2	276	7	264	12	254	17	244
3	273	8	261	13	254	18	240
4	270	9	259	14	251	19	237
5	269	10	258	15	249	20	235

LSD (0.10) 5

Averaged across management levels at Champaign (Central IL)

Yield Range Among Hybrids by Location & Year

Location	2020	2021	2022	2023
		Δ bushe	els acre ⁻¹	
Yorkville	57	-	40	62
Champaign	48	62	49	63
Nashville	70	61	60	38


Average of 36 hybrids at each location in 2020 & 2021, and 20 in 2022 & 2023 Yorkville site lost in 2021 to Derecho winds.

Se	ven Wo	onders of the 300	Bushel Corn
	Rank	Factor	Value
			bu/acre
	1	Weather	90+
	2	Fertility	90
	3	Hybrid	50
	4	Plant Population	25
	5	Crop Rotation	20
	6	Tillage/No-Tillage	15
	7	Biologicals	10

How Have Corn Yields Increased?

Corn Yield is a Product Function of Yield Components Yield = (plants/acre) x (kernels/plant) x (weight/kernel)

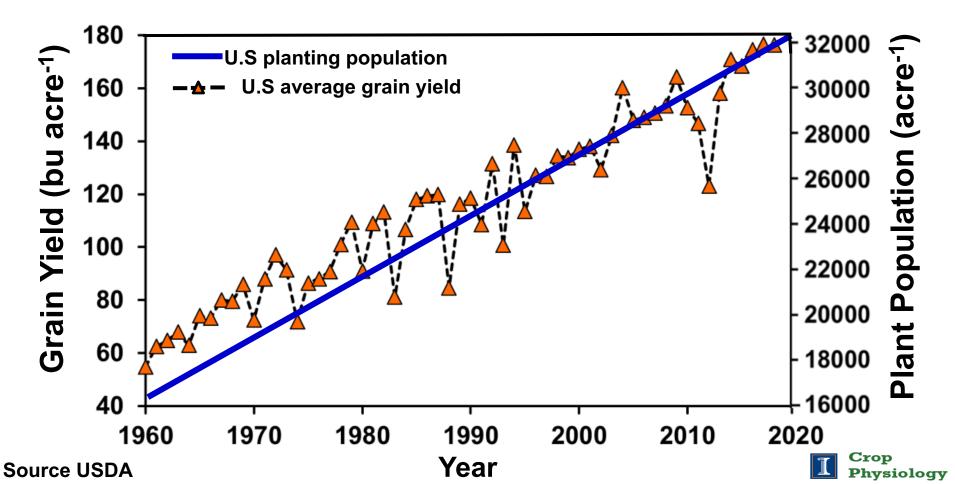
Corn Yield is a Product Function of Yield Components

Plants/acre

Kernels/plant

Weight/kernel

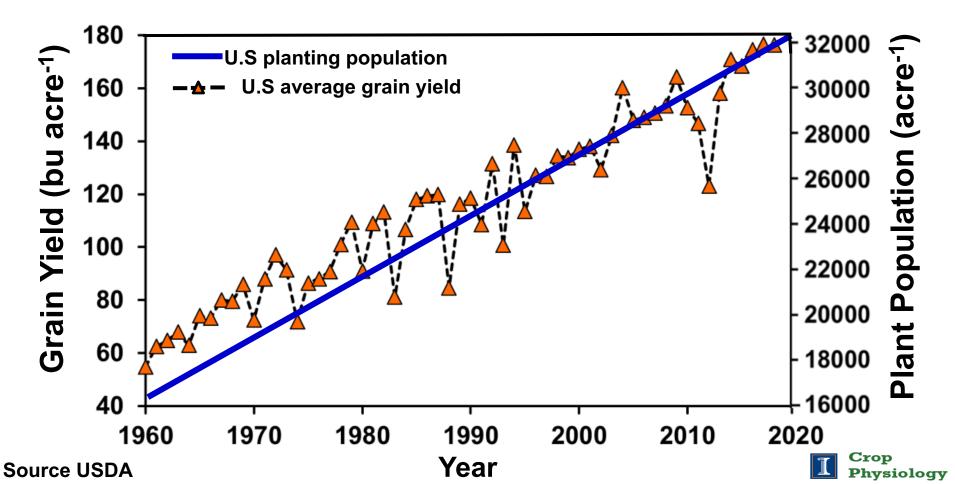
Which Yield Component Do Growers Have the Most Control Over?


Plants/acre

Kernels/plant

Weight/kernel

Population Increases 400 Plants per Acre per Year



 What is the maximum population that corn plants can tolerate in a 30 inch row spacing?

38,000 plants per acre

Population Increases 400 Plants per Acre per Year

Is the Future of Corn Higher Populations in Narrow Rows?

Both at 44,000 plants/acre

Narrow Row Spacing Intercepts More Light

Both at 44,000 plants/acre

Narrow Rows Can Support Higher Plant Populations

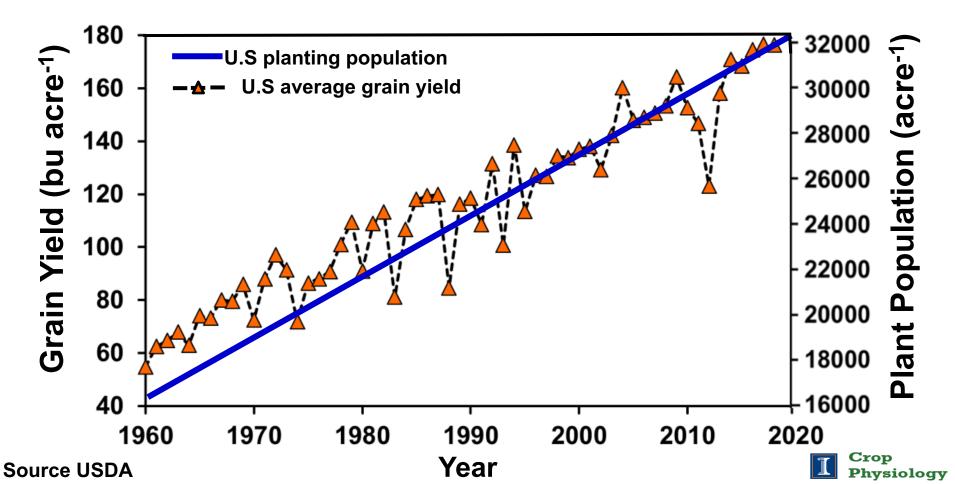
Within row plantto-plant spacing of 4.8 inches

Within row plantto-plant spacing of 7.1 inches

20-inch rows

30-inch rows

Both at 44,000 plants/acre


Response to Narrow Rows by Location & Year

Location	2020	2021	2022	2023
		Δ bushe	els acre ⁻¹	
Yorkville	-7	-	16	5
Champaign	3	23	15	18
Nashville	36	9	7	3

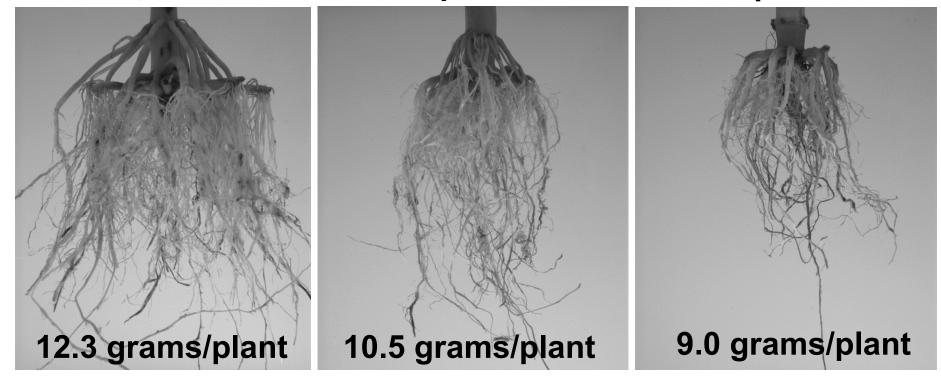
Difference between 20 inch and 30-inch row spacing Average of 36 hybrids at each location in 2020 & 2021, and 20 in 2022 & 2023 Yorkville site lost in 2021 to Derecho winds.

Population Increases 400 Plants per Acre per Year

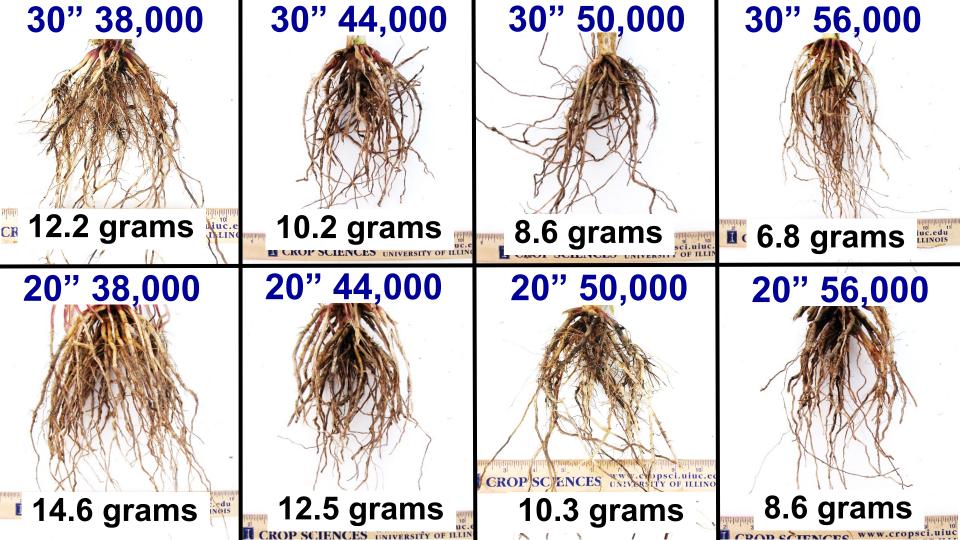
Test Your Knowledge of High Yield Corn

 What happens to the size of each plant's root system as the plant population is increased?

It Gets Smaller


Root Digging/ Washing

Increasing Plant Population = Smaller Roots 30,000 plants/acre 36,000 plants/acre 42,000 plants/acre


2.5% decrease in root mass per 1,000 plant increase in population

Test Your Knowledge of High Yield Corn

 What happens to the size of each plant's root system as row spacing is narrowed from 30 inches to 20 inches It Gets Bigger

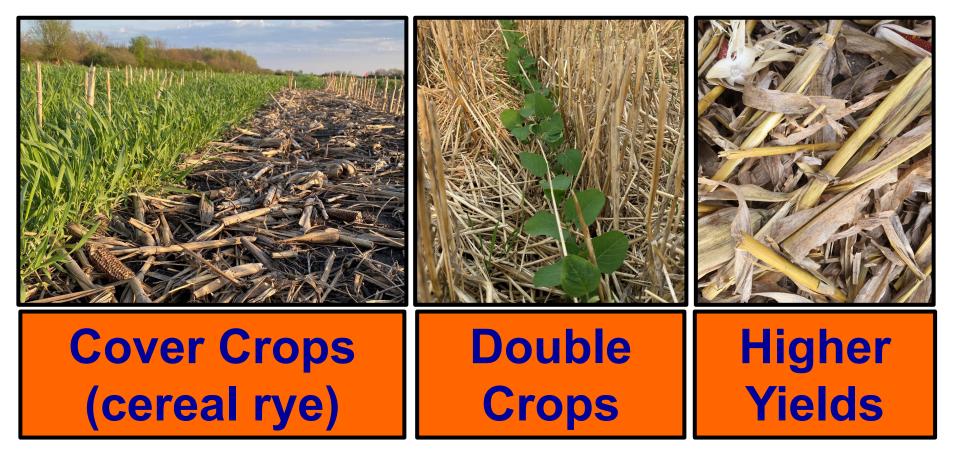
Se	ven Wo	onders of the 300	Bushel Corn
	Rank	Factor	Value
			bu/acre
	1	Weather	90+
	2	Fertility	90
	3	Hybrid	50
	4	Plant Population	25
	5	Crop Rotation	20
	6	Tillage/No-Tillage	15
	7	Biologicals	10

Sev	/en Wo	onders	of the 300	Bushel (Corn
	Rank	Facto	r	Value	
-				bu/acre	
	1	Weath	ner	90+	
	2	Fertili	ty	90	
	3	Hybrid	d	50	
	4	Plant	Population	25	
	5		Rotation	20	
	6	Tillag	e/No-Tillage	15	
	7	Biolog	gicals	10	
- Given I	key prerequ	isites	TOTAL	300 bu 👖	Crop Physiology

(

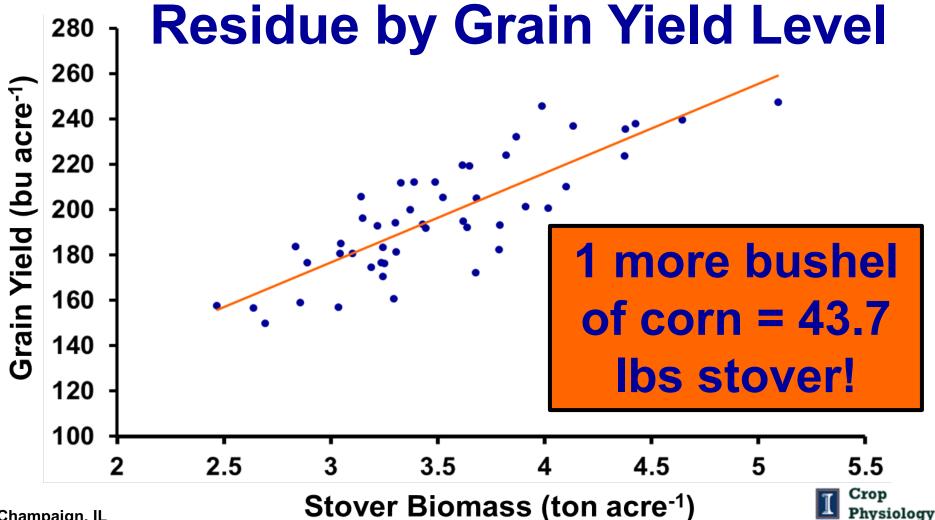
To Produce 300 Bushel Corn Yields?

- Must have the prerequisites, soil structure, drainage, season long weed control & foliar protection
- Optimize each of the seven wonders, and their positive interactions



Sev	ven Wo	onders	of the 300	Bushel (Corn
	Rank	Facto	r	Value	
-				bu/acre	
	1	Weath	ner	90+	
	2	Fertili	ity	90	
	3	Hybri	d	50	
	4	Plant	Population	25	
	5	Crop	Rotation	20	
	6	Tillag	e/No-Tillage	15	
	7	Biolo	gicals	10	
Given	key prerequ	isites	TOTAL	300 bu 👖	Crop Physiology

(


Seven V	Vonders Impact o	on Residue?
Rank	Factor	Value
		bu/acre
1	Weather	90+
2	Fertility	90
3	Hybrid	50
4	Plant Population	25
5	Crop Rotation	20
6	Tillage/No-Tillage	15
7	Biologicals	10
Given key prerequ	isites TOTAL	300 bu Crop Physiolog

Where does residue come from?

Where does residue come from?

Champaign, IL

Sev	ven V	Vonde	ers of 300 B	ushel Co	rn
R	ank	Facto	or	Value	
				bu/acre	
	1	Weat	her	90+	
	2	Fertil	lity	90	
	3	Hybr	id	50	
	4	Plant	Population	25	
	5		Rotation	20	
	6		ge/No-Tillage	15	
	7		gicals	10	
Given key	[,] prerequi	sites	TOTAL	300 bu	Crop Physiology

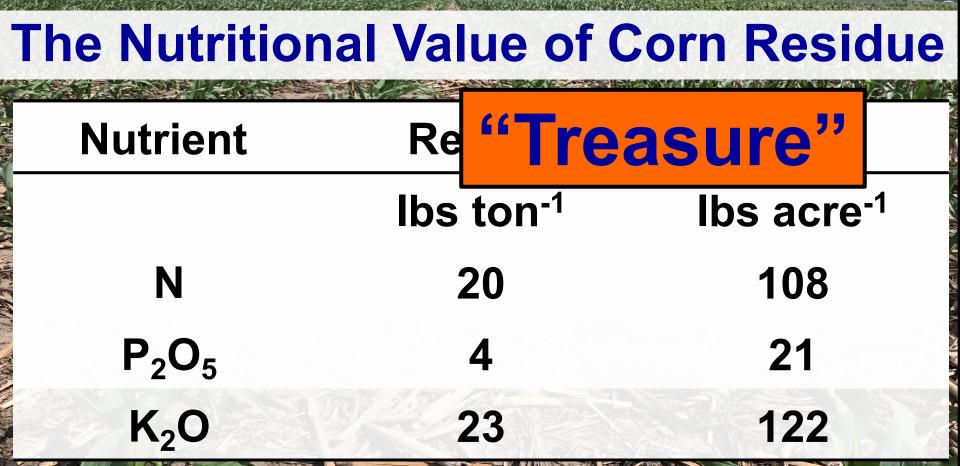
Seven Wonders of 300 Bushel Corn					
F	Rank	Facto	or	Value	
				tons/acre	
	1	Weat	her	2.0+	
	2	Fertil	ity	2.0+	
	3	Hybri	d	1.1	
	4	Plant	Population	0.6	
	5	Crop	Rotation	0.4	
	6	Tillag	e/No-Tillage	0.3	
	7	Biolo	gicals	0.2	
Given ke	y prerequi	sites	TOTAL	6.6 ton	rop hysiology

Corn Residue by Yield Level Stover **Grain Yield** Accumulation bu acre⁻¹ ton acre⁻¹ 180 3.9 250 5.5 300 6.6 **624** 13.6

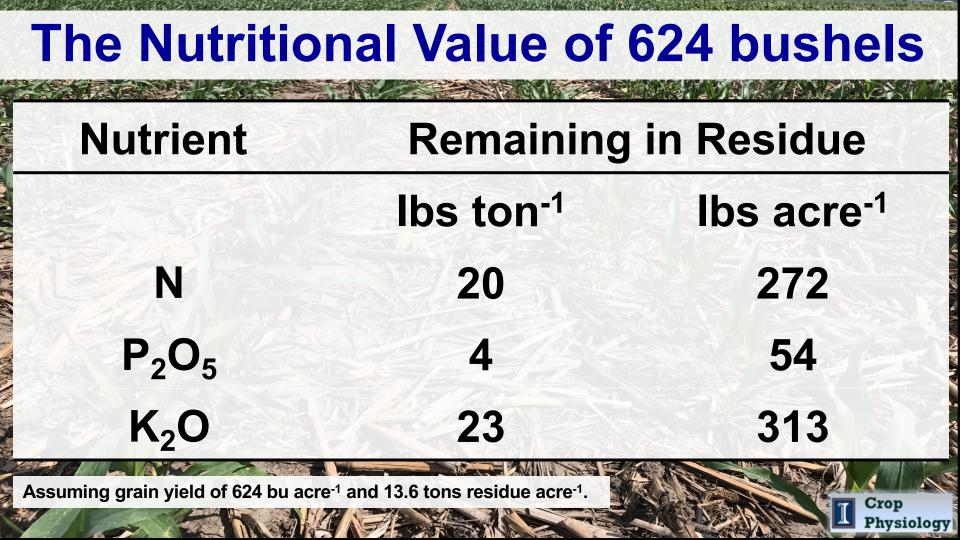
Assuming a harvest index of 52%

Is residue trash

Or


treasure?

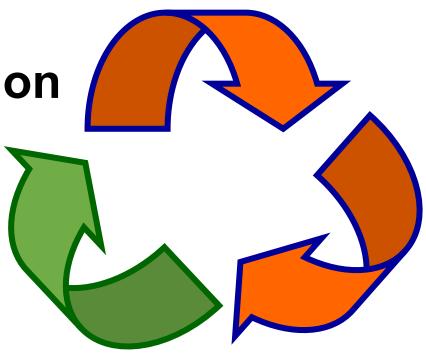
Too Much Residue Can be a Problem



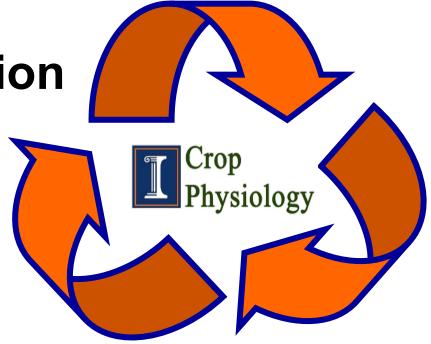
Assuming grain yield of 230 bu acre⁻¹ and 5.4 tons residue acre⁻¹. Agron. J. 105:161-170 (2013).

What can one do to 'unlock' the value of their residue?

- Reduce
 - Minimize Waste
- Reuse
 - Use 2x or More
- Recycle
 Find a New Use

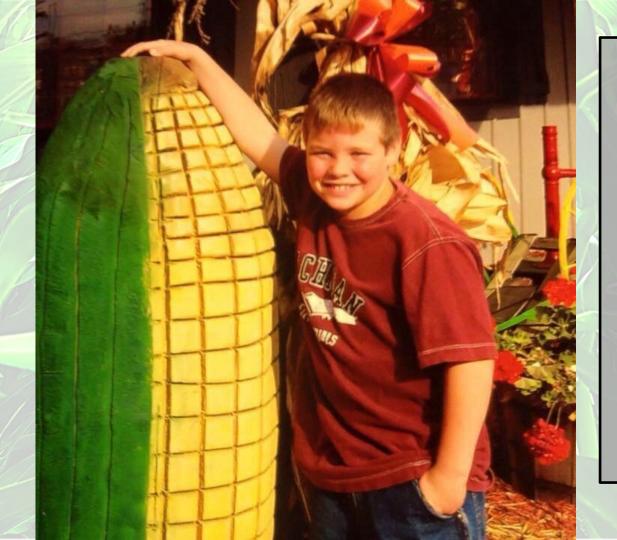

Reduce

- Residue Degradation



- Reduce
 - Residue Degradation
- Reuse
 - Nutrient Value

- Reduce
 - Residue Degradation
- Reuse
 - Nutrient Value
- •Recycle
 - Increase Yield

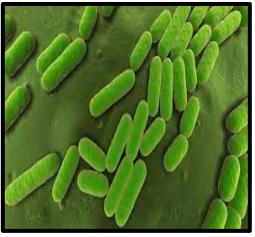


Trial Design and Site Characteristics

 Long-term continuous corn site established in 2003

Connor in 2003...

Trial Design and Site Characteristics


- Long-term continuous corn site established in 2003
- Studies conducted in 2020 and 2021 on 17th and 19th year continuous corn

2020-2021 Treatments

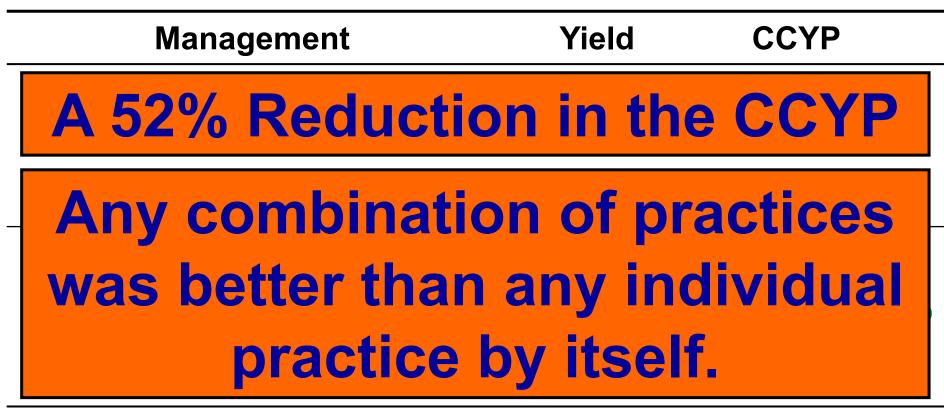
Standard Stalk Roller (Left) Sizing Knife Roller (Right)

Ammonium Sulfate 48 lb S acre⁻¹ 42 lb N acre⁻¹

Fall burndown application with a bacterial blend

Management	Yield	CCYP	
	-bushels	per acre –	
Corn-Soybean Rotation	201	-	
Long-Term Continuous Corn	153	48	

Management	Yield	CCYP
	-bushels per acre -	
Corn-Soybean Rotation	201	-
Long-Term Continuous Corn	153	48
+ Calmer Super Choppers	166	35 + 13



Management	Yield	CCYP	
	-bushels per acre -		
Corn-Soybean Rotation	201	-	
Long-Term Continuous Corn	153	48	
+ Calmer Super Choppers	166	35 + 13	
+ Ammonium Sulfate (AMS)	167	34 + 1	

Management	Yield	ССҮР
	-bushels	per acre –
Corn-Soybean Rotation	201	-
Long-Term Continuous Corn	153	48
+ Calmer Super Choppers	166	35 + 13
+ Ammonium Sulfate (AMS)	167	34 + 1
+ Microbial Blend	178	23 + 11

Key Takeaway

Adding fertility to the residue improves decomposition and subsequent grain yields regardless of mechanical management.

Microbes need nutrients too!

Research Conclusion The Seven Wonders of 300 Bushel Corn are also the foundation of 6.6 tons of "treasure"...if you can manage it

The Crop Physiology Laboratory Financial and Product Support for 2023

•ADM

•AdvanSix

Agricen

•Agrocete

•AMVAC

Anglo American

Banded Ag

Bayer

BASF

Beck's

Biolevel

Brandt

Calcium Products

•Calmer Corn Heads •Certis Biologicals Channel •CHS •DEKALB •DPH •Fluid Fert. Foundation •FMC •Illini FS Illinois NREC •ISA •Mosaic Nutrien

•Ostara

•Pivot Bio

•Pursell Agri-Tech

Sanovita

•Sound Agriculture

Stewart Farms

Stoller

•Stone

•Syngenta

•United Prairie

•USDA-NIFA

Special Thanks to National No-Till!

For More Information: Crop Physiology Laboratory University of Illinois http://cropphysiology.cropsci.illinois.edu

