

#### Taking a Systems Approach to No-till and Soil Health

Paul Jasa, Nebraska Extension



# Residue, Soil Biology, & Systems Approach

### Paul J. Jasa Extension Engineer University of Nebraska



















## NASA photo



# **Conservation Agriculture** & Soil Health Principles

- Minimal soil disturbance
- Keep the soil covered
- Diversity of plants
- Living roots in the soil
  - Integrate livestock



































## Bulk Density, g/cc

# No-till Disk 3 - 6 inch 1.11 1.39 6 - 9 inch 1.20 1.45

**Rogers Memorial Farm** 



**Total Carbon, Pounds per Acre** 



Organic Matter Increases in Soil

| Organic<br>Matter,<br>percent | Available Water Capacity,<br>inches per foot |           |            |
|-------------------------------|----------------------------------------------|-----------|------------|
|                               | Sand                                         | Silt Loam | Silty Clay |
|                               |                                              |           | Loam       |
| 1                             | 1.0                                          | 1.9       | 1.4        |
| 2                             | 1.4                                          | 2.4       | 1.8        |
| 3                             | 1.7                                          | 2.9       | 2.2        |
| 4                             | 2.1                                          | 3.5       | 2.6        |
| 5                             | 2.5                                          | 4.0       | 3.0        |

Hudson, 1994






## Own your own sprayer













## No-till Water Savings, in

#### Tillage per trip 0.5-0.75

## (Typically 0.75 gal/A) (Custom Rate \$15.00/A)

Estimated







**Growing season evaporation from an irrigated soil surface, inches** 

| No Crop |         | <b>Crop Canopy</b> |         |
|---------|---------|--------------------|---------|
| Bare    | Residue | Bare               | Residue |
| 15.1    |         | 7.6                |         |
| 14.6    |         | 8.5                |         |

#### Klocke, UNL WCREC, North Platte

**Growing season evaporation from an irrigated soil surface, inches** 

| No Crop |         | <b>Crop Canopy</b> |         |
|---------|---------|--------------------|---------|
| Bare    | Residue | Bare               | Residue |
| 15.1    | 8.5     | 7.6                | 3.8     |
| 14.6    | 9.4     | 8.5                | 5.7     |

Klocke, UNL WCREC, North Platte

# No-till Water Savings, in

# Tillage per trip0.5-0.75Evaporation2.5 - 5.0

Estimated







# Saturated Infiltration, in/hr

## Wheel Soft Track Middle Tilled 0.2 0.4

# Saturated Infiltration, in/hr

WheelSoft<br/>TrackTilled0.20.4No-till0.64.0





SW Nebraska - 6 inch rain June 12-13 Crusting, runoff, & terraces overtopped

#### Adjoining field - 6 inch rain June 12-13 Established no-till, little runoff

# No-till Water Savings, in

Tillage per trip0.5-0.75Evaporation2.5 - 5.0Infiltration2.0 - 6 ?

Estimated

#### No-till 47.7 bu/A Tilled 23.2 bu/A Rogers Memorial Farm 2000

#### No-till 121 bu/A Tilled 61.2 bu/A Rogers Memorial Farm 2000

### Tilled Yield 210 bu/A

## No-till Yield 237 bu/A

**No-till** NT w/CC DD w/CC **Disk-Disk Chisel-D Plow-D-D** 

Corn **Soybeans** 60.0 223.4 207.0 58.4 203.7 55.1 206.7 55.3 182.6 53.5 186.5 56.7

**No-till** NT w/CC DD w/CC **Disk-Disk Chisel-D Plow-D-D** 

Corn **Soybeans** 49.2 224.7 48.2 232.8 208.6 49.2 215.5 44.7 216.6 47.7 207.4 50.9

No-till NT w/CC DD w/CC **Disk-Disk Chisel-D Plow-D-D** 

| Corn  | Soybeans |
|-------|----------|
| 139.4 | 50.0     |
| 145.2 | 49.8     |
| 132.5 | 49.0     |
| 132.5 | 46.4     |
| 130.2 | 43.4     |
| 131.4 | 45.2     |

#### 2022 cover after wheat

**No-till** NT w/CC DD w/CC **Disk-Disk Chisel-D Plow-D-D** 

Corn **Soybeans** 127.9 47.8 117.5 35.9 33.8 95.6 110.6 37.8 111.8 36.1 102.6 29.9

#### **Corn/Soybean/Wheat**

#### Corn/Soybean

## C/S 120 bu/A

## C/S/W 180 bu/A










# No-till Water Savings, in

Tillage per trip **Evaporation** Infiltration **Total Savings** 

0.5-0.75 2.5 - 5.0 2.0 - 6 ?

**5.0 - 12 ?** 

Estimated



### **Soil water evaporation** from partial surface cover

| Residue          | Avg E         | Percent        |
|------------------|---------------|----------------|
| <u>Cover</u>     | <u>in/day</u> | <u>of bare</u> |
| Bare             | 80.0          |                |
| Corn 25%         | 0.07          | 95             |
| Corn 50%         | 0.07          | 93             |
| Corn 75%         | 0.07          | 97             |
| <b>Corn 100%</b> | 0.05          | 69             |
|                  |               |                |

Klocke, KSU

## Saving 5 inches is worth at least: Irrigation Costs about \$20/A-in: \$100 +

Saving 5 inches is worth at least: Corn responds about 12 bu/A-in: 60 bu/A + Beans respond about 3.5 bu/A-in: 17.5 bu/A +





#### Cover crops provide carbon biomass to protect and build the soil



#### This is how a long term no-till soil looks









Increase biological diversity Put new crops in the rotation Put forages in the rotation Use cover crops









## **Proper crop rotation is key**













Tilled "dormant" with 5+ days of 100°F June heat No-till soil was cooler and yielded 35 bu/A more


































## **Conservation Agriculture** & Soil Health Principles

- Minimal soil disturbance
- Keep the soil covered
- Diversity of plants
- Living roots in the soil
  - Integrate livestock



## **CROPWATCH.UNL.EDU**

For the sake of the future, improve soil health now. Thank You



Paul Jasa, Extension Engineer University of Nebraska-Lincoln pjasa1@unl.edu 402-472-6715

