Maximizing Nitrogen and Other Nutrients In Cover Crop Systems

June 22, 2016

Agenda

- How much N is fixed by cover crops & when can it be expected for the next cash crop
- Maximizing N production & understanding N mineralization
- Role of inoculants in cover crops & why they are important
- Managing Nitrogen in cover crops for forage

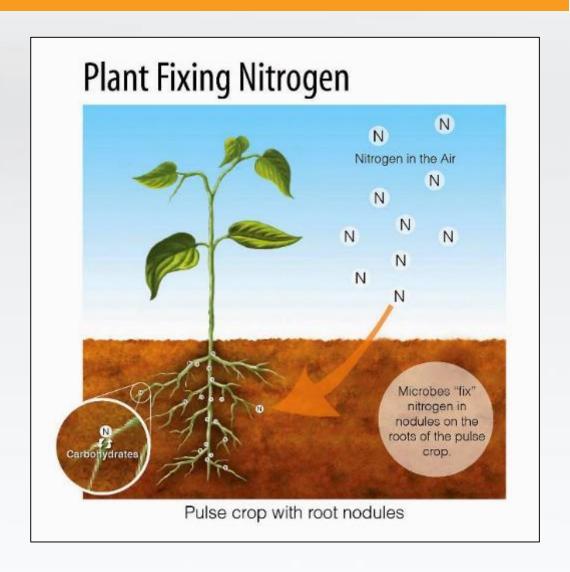
Nitrogen Fixing Differences in Legumes

•	Crimson	Clover	70 - 150 lbs	
	CHI115011	Ciuvei	10 - TOO ID:	5

- Balansa Clover 60 100 lbs.
- Berseem Clover 60 120 lbs.
- Red Clover 70 150 lbs.
- Hairy Vetch 90 180 lbs.
- Winter Peas 90 150 lbs.
- Sunn Hemp
 80 125 lbs. (summer/early fall)
- Cowpeas/Field Peas
 90 150 lbs. (summer/early fall)

Assume only 50% of this N will be available.

These estimates assume biomass is maximized and growing conditions for these legumes are matched agronomically to their growing season. Many variables exist that affect N production (including when these species are terminated)....this is only a guide.


Harvesting plant for grain and/or forage removes a HUGE portion of the N that was fixed. However, over half the harvested N can be recovered with the right cropping and/or livestock system.

SOURCE: Penn State University, Colorado State University, Kansas State University

Nitrogen Fixation Factors

- The rate of N fixation related to plant growth
- Plant Growth = N fixation understanding N mineralization
 - Drought
 - Disease
 - Potash availability
 - Low temperatures
 - 55°-80°F optimum

Nitrogen Fixing Differences in Legumes

•	Crimson	Clover	70 - 150 lbs	
	CHI115011	Ciuvei	10 - TOO ID:	5

- Balansa Clover 60 100 lbs.
- Berseem Clover 60 120 lbs.
- Red Clover 70 150 lbs.
- Hairy Vetch 90 180 lbs.
- Winter Peas 90 150 lbs.
- Sunn Hemp
 80 125 lbs. (summer/early fall)
- Cowpeas/Field Peas
 90 150 lbs. (summer/early fall)

Assume only 50% of this N will be available.

These estimates assume biomass is maximized and growing conditions for these legumes are matched agronomically to their growing season. Many variables exist that affect N production (including when these species are terminated)....this is only a guide.

Harvesting plant for grain and/or forage removes a HUGE portion of the N that was fixed. However, over half the harvested N can be recovered with the right cropping and/or livestock system.

SOURCE: Penn State University, Colorado State University, Kansas State University

Plant Available Nitrogen (PAN)

- PAN control by C:N ratio
- Legumes provide up to 100 lbs PAN, but must be terminated at bud stage to maximize production
- Cereals immobilize up to 50 lbs PAN
- Total N as a % of Dry Matter is a good predictor of PAN
 ≥ 3.5% N in DM = at least 35 lbs PAN / ton of DM
 (1% N in DM = 10-20 lbs PAN / dry ton)
- Most PAN released 4-8 weeks after cover crop kill

Estimating Plant Available Nitrogen Release

% N in DM	LBS N/DM Ton	4 wks PAN/DM Ton	10 wks PAN/DM Ton
1.0	20	<0	O
1.5	30	3	9
2.0	40	7	14
2.5	50	12	20
3.0	60	19	28
3.5	70	28	37

Taken from Oregon State University (Predicting PAN from Cover Crops), 2012

Estimating Plant Available Nitrogen Release

<u>%</u>	N in DM	LBS N/DM Ton	4 wks PAN/DM Ton	10 wks PAN/DM Ton
	1.0 (rye)	20	<0	0
	1.5	30	3	9
	2.0	40	7	14
	2.5	50	12	20
	3.0	60	19	28
	3.5 (peas)	70	28	37

Taken from Oregon State University (Predicting PAN from Cover Crops), 2012

Typical N Contributions

Cover Crop	% N in DM (early spring)
Annual Ryegrass	.5 - 1.0
Cereal Rye	.9 - 1.4
Winter Wheat	.9 - 1.4
Crimson Clover	1.5 - 2.4
Red Clover	1.9 - 2.8
Hairy Vetch	2.5 – 3.5
Winter Pea	2.5 - 3.5
Rapeseed	.8 - 1.5
Spring Oats	.7 - 1.2

Estimates taken from Pacific Northwest (cover crop seeded in Sept. and measured in April). Actual N concentrations will greatly depending on region, temperature, and rainfall; and the maturity and condition of the cover crop)

Cover Crops Should Match Desired C:N Ratio

www.soil1st.com

<u>Material</u>	C:N Ratio
rye straw	82:1
wheat straw	80:1
oat straw	70:1
corn stover	57:1
rye cover crop (anthesis)	37:1
rye cover crop (vegetative)	26:1
mature alfalfa hay	25:1
Balanced Microbial Diet	24:1
rotted barnyard manure	20:1
daikon radish	19:1
legume hay	17:1
beef manure	17:1
ryegrass (vegetative)	15:1
young alfalfa hay	13:1
hairy vetch	11:1
soil microbes (average)	8:1
rsta	

Cover Crops Should Match Desired C:N Ratio

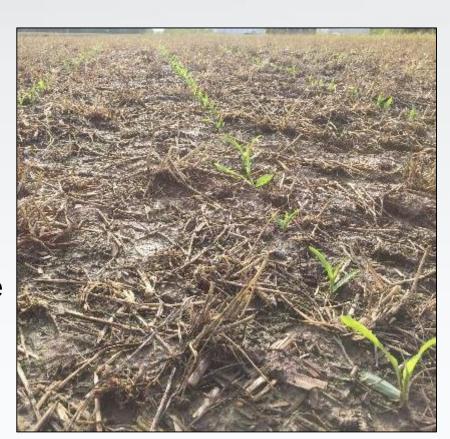
Why is the C:N Ratio Important?

- C:N ratios >24:1 often need added N for the following cash crop, depending on the crop. Residues added to the soil with a greater ratio will likely result in a temporary <u>nitrogen deficit</u> (<u>immobilization</u>)
- Species with a C:N ratio lower than 24:1 will result in a temporary <u>nitrogen</u> <u>surplus (mineralization)</u>

Cover Crops Should Match Desired C:N Ratio

Why is the C:N Ratio Important?

- The larger the C:N ratio, the slower the decomposition rate, meaning N & other nutrients could be tied up if not managed properly
- Terminating grass cover crops in the vegetative stage is recommended when going to a high-N use crop like corn or sorghum



Planting Corn After Small Grain Cover Crop

- Many people attribute inhibition in corn growth by rye to allelopathy (release of chemicals by one plant inhibiting growth of adjacent plants)
- Typically rye residues on the soil surface are responsible for weed suppression rather than release of phytotoxic chemicals
- Research shows susceptibility to allelochemicals is indirectly related to seed size — the smaller the seed the more susceptible the plant.
 - Larger corn seed and its deeper planting depth ???

Reference: Hartzler, Iowa State

Planting Corn After Small Grain Cover Crop

Several factors may be involved (vs. blaming allelopathy)

- Presence of rye mulch on soil surface alters soil environment in a way that inhibits corn growth. Mulch may delay soil warming & drying, creating a less favorable environment for corn.
- Rye may act as 'green bridge' for plant pathogens. Dying rye can serve as host for pathogens that move to corn seedlings after rye dies.
- Decaying rye biomass will tie up soil N

Reference: Hartzler, Iowa State

Planting Corn After Small Grain Cover Crop


Several factors may be involved (vs. blaming allelopathy)

- Presence of rye mulch on soil surface alters soil environment in a way that inhibits corn growth. Mulch may delay soil warming & drying, creating a less favorable environment for corn.
- Rye may act as 'green bridge' for plant pathogens. Dying rye can serve as host for pathogens that move to corn seedlings after rye dies.
- Decaying rye biomass will tie up soil N

Reference: Hartzler, Iowa State

- Rhizobia bacteria inoculants are crucial to allowing legume to fix large N amounts
 - Without correct rhizobia present, the legume won't maximize N production, and maximum benefit for corn or grass cash crop won't be achieved
- Cover crop legumes need rhizobia, and if we do not have the proper background population in the soil, we must inoculate
- Most common cover crop legumes, including winter peas, crimson clover, winter hairy vetch and sunn hemp, do not have a viable option to "pre-inoculate" (like alfalfa/red clover)
 - Rhizobium that nodulates alfalfa can survive on seed >2 years; In many cases other strains don't survive on seed >24 hrs.
- Beware of "pre-inoculated" cover crop seed
 - In most cases, there will not be any surviving rhizobia

Life span of the strains needed to properly inoculate:

- Soybeans liquid inoculants that contain extenders are good past 120 days
 - Sterile peat products are good for 30 days
 - Standard planter box product would be 2-4 days
- Alfalfa / Red Clover Alfalfa clay pre-inoculants are good for 2 years
 - Clover clay pre-inoculants would be 1 year
 - Peat-based planter box products = 48 hours max
- Crimson Clover pre-inoculants = 48 hours max
- Hairy Vetch planter box treatments = 12-24 hours max
- Winter Peas planter box treatments = 12-24 hours max

<u>Life span of the strains needed to properly inoculate:</u>

- Soybeans liquid inoculants that contain extenders are good past 120 days
 - Sterile peat products are good for 30 days
 - Standard planter box product would be 2-4 days
- Alfalfa / Red Clover Alfalfa clay pre-inoculants are good for 2 years
 - Clover clay pre-inoculants would be 1 year
 - Peat-based planter box products = 48 hours max
- Crimson Clover pre-inoculants = 48 hours max
- Hairy Vetch planter box treatments = 12-24 hours max
- Winter Peas planter box treatments = 12-24 hours max

- For max N production, it's recommended to add fresh inoculant to seed at time of planting
- Each legume requires a certain strain to nodulate properly
 - The strain that nodulates red clover won't nodulate crimson clover
 - Peas/vetches/sunn hemp require their own specific strains
 - Leftover soybean/alfalfa inoculant won't work in cover crops
- Products are now available that make inoculating all cover crop legumes much easier and more complete

- For max N production, it's recommended to add fresh inoculant to seed at time of planting
- Each legume requires a certain strain to nodulate properly
 - The strain that nodulates red clover won't nodulate crimson clover
 - Peas/vetches/sunn hemp require their own specific strains
 - Leftover soybean/alfalfa inoculant won't work in cover crops
- Products are now available that make inoculating all cover crop legumes much easier and more complete = www.soil1st.com

Cover Crops as Forage

- No better way to make cover crops pay (in 1st year) than to feed them
- Practically anything can be fed
- Important to match goal to product
 - What & when you want to use will determine the best forage option(s)
- Addition of cereal grains makes sense (simple + tonnage)
- If maximizing biomass is the goal, then everything should be done to achieve it
 - Planting date
 - Ideal use of forage (silage vs. balage vs. pasture/grazing)
 - Understand the fertility needed

Cover Crops as Forage

- No better way to make cover crops pay (in 1st year) than to feed them
- Practically anything can be fed
- Important to match goal to product
 - What & when you want to use will determine the best forage option(s)
- Addition of cereal grains makes sense (simple + tonnage)
- If maximizing biomass is the goal, then everything should be done to achieve it
 - Planting date
 - Ideal use of forage (silage vs. balage vs. pasture/grazing)
 - Understand the fertility needed

Cereal Grains for Spring Forage

Wheat

- Higher in quality than rye, triticale and oats, but not barley
- Produces more dry matter than barley
 - <u>BEST USE</u> Spring Pasture; Silage (boot to dough stage); Hay (boot to milk stage)

Fall Triticale

- Best suited for grazing pasture
- Because of large stems, hay wilting & silage packing is difficult
 - **BEST USE** Spring Pasture; Silage & Hay (boot to dough stage)

Winter Barley

- Value as a silage crop is comparable to whole plant corn
 - **BEST USE** Silage & Hay (boot to dough stage)

Cereal Rye

- Greatest production for hay or pasture ground due to quick growth in spring
 - **BEST USE** Spring Pasture

Fertility Needed by Typical Cover Crops

- Wheat/Rye as Silage (Removal Rates)
 - Equivalent 60 bushel yield crop
 - 80-100# N
 - 40# P
 - 60-70# K
- Oats
 - Equivalent 80 bushel yield crop
 - 70-90# N
 - 30# P
 - 100# K
- Brassicas will respond favorably to additional N & P
 - 30-40# of N

Forage Sorghums / Summer Annuals

- Ideal for filling summer gap (i.e., after wheat harvest)
- Perfect option when situations dictate earlier seeding (i.e., prevent plant)
- Take advantage of heat & dry weather (and get tonnage when cool season forages are dormant)
- Maximize tonnage & biomass in short amount of time
- Many Options:
 - Forage Sorghums (1 Cut) & Sorghum Sudangrass (Multiple Cuttings)
 - Sudangrass (Quicker dry-down for dry hay possibilities)
 - Pearl Millet (Grazing option from summer into fall no prussic acid)
- SUMMER ANNUALS REQUIRE ADDITIONAL MANAGEMENT (especially N)
 - Forage sorghums need approx. 1.25# actual N / day

Forage Sorghums / Summer Annuals

- Ideal for filling summer gap (i.e., after wheat harvest)
- Perfect option when situations dictate earlier seeding (i.e., prevent plant)
- Take advantage of heat & dry weather (and get tonnage when cool season forages are dormant)
- Maximize tonnage & biomass in short amount of time
- Many Options:
 - Forage Sorghums (1 Cut) & Sorghum Sudangrass (Multiple Cuttings)
 - Sudangrass (Quicker dry-down for dry hay possibilities)
 - Pearl Millet (Grazing option from summer into fall no prussic acid)
- SUMMER ANNUALS REQUIRE ADDITIONAL MANAGEMENT (especially N)
 - Forage sorghums need approx. 1.25# actual N / day

Managing Elevated Nitrate Levels in Forage

- Expect nitrate levels to be higher whenever excess fertility is present and/or manure applications have recently been made
- When manure or fertilizer applications are followed by period of stress on a plant (i.e., drought/frost), nitrate can rise to levels that may take several weeks to dissipate
- Unfortunately, most cover crops can be susceptible to elevated levels of nitrates
 - Rye, oats, summer annuals, radish, turnips, rapeseed

Managing Elevated Nitrate Levels in Forage

Common sense can greatly reduce probability of nitrate issues:

- Nitrates are concentrated more in lower stalk
 - Raising cutting height can reduce risk
- Cut plants retain nitrate levels
 - Best to leave plant in field & test forage until levels have subsided
- Feedstuffs high in carbohydrates (like grain) help reduce effects of nitrates
- When stressful drought precedes moisture event, delay harvest 1-2 weeks
- Consider split applications of N
- Expose livestock slowly over several days into suspected pasture
- Always provide plenty high carb forage
- TEST forage if problem anticipated

Manure Matters Too

Numerous work from Iowa, Pennsylvania, Canada, etc.

- Cover crops can reduce N₂O emissions and soil inorganic N losses when manure is applied
- Small grains alongside manures have increasingly been showing their ability to decrease NO₃ losses in drainage water
- Other covers being utilized alongside hog, poultry, and cattle (dairy) manures
 - Annual ryegrass very tolerant to swine manure
 - Clovers (crimson, red, berseem)
 - Brassicas (radish, turnips)
- MSU testing manure slurry seeding methods since for over 10 years with very positive results

Questions?

Thank You for your time!

